CERN PS2 UPGRADE

based on material by M. Benedikt, Y. Papaphilippou, S. Hancock et al.

LHC INJECTOR UPGRADE

White Paper Studies for LHC Injector Upgrade

U. Wienands, SL. LARP PS2 Mtg, 229/05/2008

PERFORMANCE REQ'TS

- Beam brightness for LHC luminosity upgrade:
 - Reach twice brightness of the ultimate 25 ns LHC beam (~20% reserve for losses): 4.2×10¹¹ per LHC bunch (inst. 1.7×10¹¹)
 - Determines average line density in the machine at injection and therefore the injection energy via incoherent SC tune spread.
- Significantly higher injection energy into SPS (~50 GeV).
 - Injection into SPS well above transition energy
 - Reduced space charge at SPS injection
 - Smaller transverse emittances and reduced losses
 - Potential for long-term SPS replacement with higher energy.
 - Ejection energy determines PS2 size and magnet requirements
- As versatile as existing PS
 - Protons, ions, high intensity physics beams, slow extraction, etc.

MACHINE SIZE

- Constraints from filling SPS for physics
 - Complete filling of SPS circumference desired for HI FT physics
 - Use island multi-turn extraction scheme, similar to PS (5-turns)
 - Ideal PS2 length 1/5 SPS = 11/5 PS = 2.2 PS.
- Constraints from synchronisation (rf cogging)
 - $N \times h_{PS2} = K \times h_{SPS}$ is needed for correct synchronisation
 - Best candidates are (N, K) = (77, 15) or (77, 16)
 - Where 77/15 is preferred since 5 PS2 are slightly shorter than the SPS.
- Optimum length for PS2 from above arguments
 - PS2 = 15/77 SPS = 15/77 * 11 PS = 15/7 PS.
 - Circumference PS2 = 15/7 PS = 1346.4 m
 - Radius PS2 = 214.3 m
 - h (200MHz SPS) = 4620, h (40MHz SPS) = 924, h (40MHz PS2) = 180

6

U. Wienands, SL. LARP PS2 Mtg, 2

PS2 PRELIM. PARAMETERS

Parameter	unit	PS2	PS
Injection energy kinetic	GeV	4.0	1.4
Extraction energy kinetic	GeV	~ 50	13/25
Max. intensity LHC (25ns)	ppb	4.0 x 10 ¹¹	1.7 x 10 ¹¹
Max. intensity FT	ppp	1.2 x 10 ¹⁴	3.3 x 10 ¹³
Max. stored energy	kJ	1000	70
Linear ramp rate	T/s	1.5	2.2
Repetition time (50 GeV)	s	~ 2.5	1.2/2.4
Max. effective beam power	kW	400	60

REAL OR IMAG γ_{TR} ?

· Real transition:

- Have to cross without enlarging emittance
 - · gtr jumps etc.
- High enough ns to allow for "rf gymnastics" needed to match bunch shape to SPS
- Straightforward magnet lattice

• Imaginary transition (=negative α_p)

- No transition crossing => no emittance issue
- Don't need rf gymnastics for p, maybe for ions
 - Need very high $|\alpha_p|$ to raise ns at extraction if rf gymnastics is wanted
- > magnet lattice rather complicated

IMAG. YTR CANDIDATE

- γ_t of 19.8i
- Tunes of 15.75 and 13.75
- 180 dipoles, 3.3m long
- 134 quadrupoles in 12
 (+ 2) families of 5 types with max. strength of 0.1m⁻²
- Max. beta of 51m in horizontal and 54m in the vertical plane
- Dispersion min. of -1.5m and max. of 5.7m
- Chromaticities of -21 and -31
- Total length of 1346.4m

The NMC with suppressor ring

9

· At the May-29 PS2 internal review:

- Working decision to pursue imag. γ_{tr}
- This naturally asks for an rf frequency ≈
 40 MHz
 - natural match to SPS, no need for rf gymnastics
 - but need 20 MHz for ions
 - two rf systems, or one with large tuning range
- Need to settle exact γ_{tr} value
 - I suspect it'll be higher (i30...i100)
 - this defines parameters like v_s , V_{rf} , bunch length etc.

LONGITUDINAL PARMS

Bunch length for matched bunches of 0.35eVs (cyan) and 0.6eVs (magenta) for real (solid lines) and imaginary (dashed lines) values of γ_{tr} .

Adiabaticity factor $\sqrt{(|\eta|/\gamma)}$ versus kinetic energy for protons in the PS2 for real (solid lines) and imaginary (dashed lines) values of γ_{tr} of 10 (red), 15 (green) and 20 (blue).

MORE PARAMETERS

My evaluation, subject to changes!

Parameter	Unit	LHC(25ns)	FT
γ_{tr}		≈ i10	≈ i10
ppb		4.2E11	78E11
I _{bunch} (1.5 MV)	m	≈ 1.6	≈ 1.2
$I_{average}$	Α	2.5	3.9
I _{peak}	Α	12	26
$\varepsilon_{long,extr}$	eVs	0.6	0.35
$V_{S}(for 1.5 MV)$		0.009	0.009

WHERE DOES LARP FIT?

- PS2 Design Report due by end of 2010
- · CERN interested in getting help
 - resources tight until LHC commissioned
- LARP interested in doing "interesting" work
 - also potential interested in construction work
 - should be collaborative amongst LARP labs
- ... need to identify interesting work useful in advancing the PS2 studies

MY ATTEMPT ...

PS2 Topic 1:

Tracking, nonlinearities, space charge, halos,
 H⁻ injection, MTE

PS2 Topic 2:

- Intensity effects, Instabilities, Impedance

PS2 Topic 3:

- Rf System

TOPIC 1

- H- Laser stripping-injection R&D (ORNL-SNS, LBNL)
- Injection simulation with imag γ_{tr} lattice, phase-space painting, sp. charge, halo development, ... (FNAL? synergy with Project X, LBNL, SNS?)
- Beam collimation: tracking as well as hardware. Crystal collimation?? (SLAC?, FNAL?)
- MultiTurnExtraction (MTE)
 (BNL interest, synergy with (g-2) expt.@JPARC)
- Imag. γ_{tr} lattice R&D (BNL, SLAC?)

Topic 2

- Impedance evaluation, simulation of components, testing of prototypes (later) (SLAC, LBNL, FNAL)
- Multibunch instabilities, feedback systems, fb kickers (SLAC, LBNL)
- e-Cloud R&D: Vacuum requirements, chamber concepts, tie-in with SPS e-cloud expts.
 Synergy with Project X & BNL RHIC.

TOPIC 3

Rf System

- New development of a perpendicularly biased 40-MHz cavity with high gradient. Concept originally developed at LANL. FNAL has done some work in that direction for the Booster. This is a very challenging project!
- LLRF R&D (SLAC?).